SARKAR A. 1, URšIC H. 1,2, JAZBEC A. 1, SNOJ L. 1,3, ŠADL M. 1,2, DRNOVšEK S. 1, MALIC B. 1,2
1 Jožef Stefan Institute, Ljubljana, Slovenia; 2 Jožef Stefan International Postgraduate School, Ljubljana, Slovenia; 3 University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia
Current activities in cooling research focus on solid-state cooling, based on caloric effects such as electrocaloric (EC), where the entropy of polar material changes with the applied electrical field1. Currently, the relaxor ferroelectric (1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (PMN–100xPT) is one of the most promising inorganic EC materials2,3. Namely, PMN–10PT exhibits an EC temperature change of 3.45 K at an electric field of 160 kV cm-1 at 127 °C4. Previously, we investigated the feasibility of using PMN–10PT-based EC cooling elements in high-radiation environments such as medical accelerators, nuclear reactors, and space technologies5. We found that the dielectric, ferroelectric and EC properties of PMN–10PT remained almost unchanged upon exposure to a mixed field of neutrons and γ-rays at doses higher than the largest expected neutron irradiation in CERN6. By manganese doping of PMN–10PT, the temperature range of the peak EC response could be broadened and shifted closer to room temperature7.
In this contribution, we study how neutron and γ-irradiation influence the EC properties of aliovalently doped PMN–10PT ceramics. We prepared acceptor (Mn, 1 mol%) and donor (La, 1 mol%) doped PMN–10PT ceramic by mechanochemical synthesis and sintering at 1200 °C for 2 hours. The ceramics were irradiated in the research reactor TRIGA Mark II 8 with doses of 1016 cm-2 and 1017 cm-2 of 1 MeV equivalent neutron fluence for silicon and γ-rays at 145 kGy and 1200 kGy. In the contribution, we discuss the influence of irradiation on crystal structure, microstructure, dielectric, ferroelectric and EC properties of Mn- and La-doped PMN–10PT.
References:
1 X. Moya, S. Kar-Narayan, and N.D. Mathur, Nat Mater 13, 439 (2014).
2 U. Plaznik, M. Vrabelj, Z. Kutnjak, B. Mali?, A. Poredoš, and A. Kitanovski, EPL 112, 19901 (2015).
3 J. Peräntie, H.N. Tailor, J. Hagberg, H. Jantunen, and Z.-G. Ye, J Appl Phys 114, 174105 (2013).
4 M. Vrabelj, H. Urši?, Z. Kutnjak, B. Roži?, S. Drnovšek, A. Ben?an, V. Bobnar, L. Fulanovi?, and B. Mali?, J Eur Ceram Soc 36, 75 (2016).
5 H. Urši?, U. Prah, T. Rojac, A. Jazbec, L. Snoj, S. Drnovšek, A. Bradeško, A. Mirjani?, M. Vrabelj, and B. Mali?, J Eur Ceram Soc 42, 5575 (2022).
6 M.I. Besana, F. Cerutti, A. Ferrari, W. Riegler, and V. Vlachoudis, Physical Review Accelerators and Beams 19, 111004 (2016).
7 A. Bradeko, M. Vrabelj, L. Fulanovi?, ar?nas Svirskas, M. Ivanov, R. Katili?te, D. Jablonskas, M. im?nas, G. Useviius, B. Mali, J. Banys, and T. Rojac, J Mater Chem C Mater 9, 3204 (2021).
8 L. Snoj, G. Žerovnik, and A. Trkov, Applied Radiation and Isotopes 70, 483 (2012).