Biophysical stimulation of stem cells on functional bioceramics: in vitro and in silico studies
BASU B. 1
1 Indian Institute of Science, Bangalore, Karnataka, India, Bangalore, India
Biomaterials science and biomedical engineering have sustained as one among frontier and growing areas of research and innovation within the engineering science community in the world; considering the number of scientific discoveries and their societal impact. Against this backdrop, I shall first mention the Indian landscape of research on Biomaterials Science and the recent efforts towards indigenous manufacturing of biomaterial implants in India.
While introducing the fundamental concepts, it will be emphasized that the phenomenological interaction of a biological cell with a synthetic material is influenced by several factors, e.g. elastic stiffness, surface topography and wettability. In this context, the results of the plethora of in vitro studies to validate a strikingly different approach, involving the intermittent delivery of electric or magnetic field stimulation to manipulate cell functionality on electroconductive or magnetoactive biomaterials, will be discussed. It will be argued how the electric stimuli can potentially restrict the cell proliferation, leading to early onset of stem cell differentiation.
In an effort to rationalize the outcome of in vitro studies, the theoretical concept based on the analytical solution of the Poisson’s equations with appropriate boundary conditions will be described. The outcome of such in silico study will unravel the significance of substrate conductivity in synergy with electric field parameters towards modulation of bioelectric stress field, which has major ramification on cellular deformation and cell fate processes. Towards the end, the results of our recent molecular dynamics (MD) study to probe into the influence of electric field on protein adsorption (on bioceramic) and adsorbed protein-cell surface receptor interaction will be presented.
The talk will close with the mention of many unanswered questions and potential collaboration opportunities.